Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-21384075x-38061319750\)
|
(homogenize, simplify) |
\(y^2z=x^3-21384075xz^2-38061319750z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-21384075x-38061319750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 39600 \) | = | $2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11$ |
|
Discriminant: | $\Delta$ | = | $-75139954560000000$ | = | $-1 \cdot 2^{13} \cdot 3^{6} \cdot 5^{7} \cdot 11^{5} $ |
|
j-invariant: | $j$ | = | \( -\frac{23178622194826561}{1610510} \) | = | $-1 \cdot 2^{-1} \cdot 5^{-1} \cdot 11^{-5} \cdot 285121^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6922478618738718326035216970$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.64507558076282149018828729047$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0129363433875729$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.879901576307527$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.035103218712315014059544591261$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 80 $ = $ 2^{2}\cdot1\cdot2^{2}\cdot5 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $2.8082574969852011247635673009 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 2.808257497 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.035103 \cdot 1.000000 \cdot 80}{1^2} \\ & \approx 2.808257497\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 1728000 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{5}^{*}$ | additive | -1 | 4 | 13 | 1 |
$3$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$5$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
$11$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$5$ | 5B.4.2 | 5.12.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 1201 & 450 \\ 285 & 931 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 1265 & 1201 \end{array}\right),\left(\begin{array}{rr} 439 & 0 \\ 0 & 1319 \end{array}\right),\left(\begin{array}{rr} 1311 & 10 \\ 1310 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 983 & 210 \\ 705 & 149 \end{array}\right),\left(\begin{array}{rr} 661 & 450 \\ 225 & 931 \end{array}\right),\left(\begin{array}{rr} 329 & 870 \\ 0 & 1319 \end{array}\right)$.
The torsion field $K:=\Q(E[1320])$ is a degree-$9732096000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1320\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \) |
$3$ | additive | $6$ | \( 4400 = 2^{4} \cdot 5^{2} \cdot 11 \) |
$5$ | additive | $18$ | \( 144 = 2^{4} \cdot 3^{2} \) |
$11$ | split multiplicative | $12$ | \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 39600.er
consists of 2 curves linked by isogenies of
degree 5.
Twists
The minimal quadratic twist of this elliptic curve is 110.b1, its twist by $60$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.440.1 | \(\Z/2\Z\) | not in database |
$4$ | 4.0.18000.1 | \(\Z/5\Z\) | not in database |
$6$ | 6.0.85184000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$10$ | 10.2.75937500000000000000.3 | \(\Z/5\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/10\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | add | ord | split | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | - | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
$\mu$-invariant(s) | - | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.