Properties

Label 3950i
Number of curves $1$
Conductor $3950$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 3950i1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1\)
\(79\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3950i do not have complex multiplication.

Modular form 3950.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} - 2 q^{7} + q^{8} - 2 q^{9} - q^{11} + q^{12} + 2 q^{13} - 2 q^{14} + q^{16} - q^{17} - 2 q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 3950i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3950.i1 3950i1 \([1, 0, 0, -27463, -1755383]\) \(-3665123505412225/3272081408\) \(-2045050880000\) \([]\) \(8664\) \(1.2871\) \(\Gamma_0(N)\)-optimal