Show commands: SageMath
Rank
The elliptic curves in class 394485q have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 394485q do not have complex multiplication.Modular form 394485.2.a.q
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 394485q
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
394485.q5 | 394485q1 | \([1, 0, 0, 43344, 19064511]\) | \(373092501599/6718359375\) | \(-162164862980859375\) | \([2]\) | \(3932160\) | \(1.9827\) | \(\Gamma_0(N)\)-optimal |
394485.q4 | 394485q2 | \([1, 0, 0, -859781, 289460136]\) | \(2912015927948401/184878500625\) | \(4462517565452480625\) | \([2, 2]\) | \(7864320\) | \(2.3293\) | |
394485.q2 | 394485q3 | \([1, 0, 0, -13539656, 19174865961]\) | \(11372424889583066401/50586128775\) | \(1221026173749447975\) | \([2]\) | \(15728640\) | \(2.6759\) | |
394485.q3 | 394485q4 | \([1, 0, 0, -2629906, -1287013189]\) | \(83339496416030401/18593645841225\) | \(448805409454131482025\) | \([2, 2]\) | \(15728640\) | \(2.6759\) | |
394485.q6 | 394485q5 | \([1, 0, 0, 5917269, -7914492684]\) | \(949279533867428399/1670570708285115\) | \(-40323515740610834985435\) | \([2]\) | \(31457280\) | \(3.0225\) | |
394485.q1 | 394485q6 | \([1, 0, 0, -39499081, -95546745994]\) | \(282352188585428161201/20813369346315\) | \(502384138719163208235\) | \([2]\) | \(31457280\) | \(3.0225\) |