Properties

Label 390402.d
Number of curves $4$
Conductor $390402$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 390402.d have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(23\)\(1\)
\(41\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 390402.d do not have complex multiplication.

Modular form 390402.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{5} - q^{8} + 2 q^{10} + 4 q^{11} - 2 q^{13} + q^{16} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 390402.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
390402.d1 390402d4 \([1, -1, 0, -4216758, -3330078400]\) \(76836090299697/45893924\) \(4952787974659019844\) \([2]\) \(10813440\) \(2.5313\)  
390402.d2 390402d3 \([1, -1, 0, -2502798, 1503174536]\) \(16065959324337/259970012\) \(28055486151185526972\) \([2]\) \(10813440\) \(2.5313\)  
390402.d3 390402d2 \([1, -1, 0, -312738, -31181500]\) \(31345262577/14227984\) \(1535457897625858704\) \([2, 2]\) \(5406720\) \(2.1847\)  
390402.d4 390402d1 \([1, -1, 0, 68142, -3681964]\) \(324242703/241408\) \(-26052307913058048\) \([2]\) \(2703360\) \(1.8381\) \(\Gamma_0(N)\)-optimal