Properties

Label 390402.bp
Number of curves $2$
Conductor $390402$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 390402.bp have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(23\)\(1\)
\(41\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 390402.bp do not have complex multiplication.

Modular form 390402.2.a.bp

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 3 q^{5} - 2 q^{7} + q^{8} + 3 q^{10} - 6 q^{11} - q^{13} - 2 q^{14} + q^{16} + 3 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 390402.bp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
390402.bp1 390402bp1 \([1, -1, 1, -7241, 782399]\) \(-389017/2214\) \(-238930813061334\) \([]\) \(1900800\) \(1.4428\) \(\Gamma_0(N)\)-optimal
390402.bp2 390402bp2 \([1, -1, 1, 64174, -19356631]\) \(270840023/1654104\) \(-178507865224934424\) \([]\) \(5702400\) \(1.9922\)