Properties

Label 390390ck
Number of curves $4$
Conductor $390390$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ck1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 390390ck have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
\(11\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 390390ck do not have complex multiplication.

Modular form 390390.2.a.ck

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} + q^{7} - q^{8} + q^{9} - q^{10} - q^{11} + q^{12} - q^{14} + q^{15} + q^{16} + 6 q^{17} - q^{18} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 390390ck

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
390390.ck4 390390ck1 \([1, 0, 1, -6841293, -7361982392]\) \(-7336316844655213969/604492922880000\) \(-2917771880593489920000\) \([2]\) \(35389440\) \(2.8645\) \(\Gamma_0(N)\)-optimal
390390.ck3 390390ck2 \([1, 0, 1, -111540173, -453421090744]\) \(31794905164720991157649/192099600000000\) \(927228078176400000000\) \([2, 2]\) \(70778880\) \(3.2111\)  
390390.ck2 390390ck3 \([1, 0, 1, -113622253, -435614309752]\) \(33608860073906150870929/2466782226562500000\) \(11906686652211914062500000\) \([2]\) \(141557760\) \(3.5577\)  
390390.ck1 390390ck4 \([1, 0, 1, -1784640173, -29018592010744]\) \(130231365028993807856757649/4753980000\) \(22946553449820000\) \([2]\) \(141557760\) \(3.5577\)