Show commands: SageMath
Rank
The elliptic curves in class 3900d have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 3900d do not have complex multiplication.Modular form 3900.2.a.d
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 3900d
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3900.e1 | 3900d1 | \([0, -1, 0, -2033, 4062]\) | \(3718856704/2132325\) | \(533081250000\) | \([2]\) | \(4608\) | \(0.93984\) | \(\Gamma_0(N)\)-optimal |
3900.e2 | 3900d2 | \([0, -1, 0, 8092, 24312]\) | \(14647977776/8555625\) | \(-34222500000000\) | \([2]\) | \(9216\) | \(1.2864\) |