Properties

Label 389136cr
Number of curves $2$
Conductor $389136$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 389136cr have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(11\)\(1\)
\(67\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 389136cr do not have complex multiplication.

Modular form 389136.2.a.cr

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{9} - 4 q^{13} - 2 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 389136cr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
389136.cr2 389136cr1 \([0, 1, 0, -204288, -31084044]\) \(129938649625/17924577\) \(130066356448038912\) \([2]\) \(2764800\) \(2.0106\) \(\Gamma_0(N)\)-optimal
389136.cr1 389136cr2 \([0, 1, 0, -852848, 271663764]\) \(9454162623625/1068251283\) \(7751566586522677248\) \([2]\) \(5529600\) \(2.3572\)