This elliptic curve has smallest conductor among elliptic curves over $\Q$ of rank 2.
Minimal Weierstrass equation
\( y^2 + y = x^{3} + x^{2} - 2 x \)
Mordell-Weil group structure
Infinite order Mordell-Weil generators and heights
| \(P\) | = | \( \left(-1, 1\right) \) | \( \left(0, 0\right) \) |
| \(\hat{h}(P)\) | ≈ | 0.686667083306 | 0.327000773652 |
Integral points
\( \left(-2, 0\right) \), \( \left(-1, 1\right) \), \( \left(0, 0\right) \), \( \left(1, 0\right) \), \( \left(3, 5\right) \), \( \left(4, 8\right) \), \( \left(6, 15\right) \), \( \left(39, 246\right) \), \( \left(133, 1539\right) \), \( \left(188, 2584\right) \)
Invariants
|
magma: Conductor(E);
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
|
|||||
| Conductor: | \( 389 \) | = | \(389\) | ||
|
magma: Discriminant(E);
sage: E.discriminant().factor()
gp: E.disc
|
|||||
| Discriminant: | \(389 \) | = | \(389 \) | ||
|
magma: jInvariant(E);
sage: E.j_invariant().factor()
gp: E.j
|
|||||
| j-invariant: | \( \frac{1404928}{389} \) | = | \(2^{12} \cdot 7^{3} \cdot 389^{-1}\) | ||
| Endomorphism ring: | \(\Z\) | (no Complex Multiplication) | |||
| Sato-Tate Group: | $\mathrm{SU}(2)$ | ||||
BSD invariants
|
magma: Rank(E);
sage: E.rank()
|
|||
| Rank: | \(2\) | ||
|
magma: Regulator(E);
sage: E.regulator()
|
|||
| Regulator: | \(0.152460177943\) | ||
|
magma: RealPeriod(E);
sage: E.period_lattice().omega()
gp: E.omega[1]
|
|||
| Real period: | \(4.98042512171\) | ||
|
magma: TamagawaNumbers(E);
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
|
|||
| Tamagawa product: | \( 1 \) = \( 1 \) | ||
|
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp: elltors(E)[1]
|
|||
| Torsion order: | \(1\) | ||
|
magma: MordellWeilShaInformation(E);
sage: E.sha().an_numerical()
|
|||
| Analytic order of Ш: | \(1\) (rounded) | ||
Modular invariants
Modular form 389.2.a.a
|
magma: ModularDegree(E);
sage: E.modular_degree()
|
|||
| Modular degree: | 40 | ||
| \( \Gamma_0(N) \)-optimal: | yes | ||
| Manin constant: | 1 | ||
Special L-value
\( L^{(2)}(E,1)/2! \) ≈ \( 0.759316500288 \)
Local data
| prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
|---|---|---|---|---|---|---|---|
| \(389\) | \(1\) | \( I_{1} \) | Split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The 2-adic representation attached to this elliptic curve is surjective.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) .
$p$-adic data
$p$-adic regulators
Note: \(p\)-adic regulator data only exists for primes \(p\ge5\) of good ordinary reduction.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 389 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ss | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | split |
| $\lambda$-invariant(s) | 2,3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 |
| $\mu$-invariant(s) | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Isogenies
This curve has no rational isogenies. Its isogeny class 389.a consists of this curve only.
Growth of torsion in number fields
The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base-change curve |
|---|---|---|---|
| 3 | 3.3.1556.1 | \(\Z/2\Z\) | Not in database |
| 6 | 6.6.941821904.1 | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.