Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-1539x-23166\)
|
(homogenize, simplify) |
\(y^2z=x^3-1539xz^2-23166z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1539x-23166\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-23, 8)$ | $0.91471555942890003795294722209$ | $\infty$ |
Integral points
\((-23,\pm 8)\), \((55,\pm 242)\)
Invariants
Conductor: | $N$ | = | \( 3888 \) | = | $2^{4} \cdot 3^{5}$ |
|
Discriminant: | $\Delta$ | = | $1451188224$ | = | $2^{13} \cdot 3^{11} $ |
|
j-invariant: | $j$ | = | \( \frac{555579}{2} \) | = | $2^{-1} \cdot 3^{4} \cdot 19^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.61922719637449655185357529510$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.0809812487978826413426316269$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.024011249937178$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.068677812458463$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.91471555942890003795294722209$ |
|
Real period: | $\Omega$ | ≈ | $0.76240180855367524367340000199$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.7895231872831207865809688413 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.789523187 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.762402 \cdot 0.914716 \cdot 4}{1^2} \\ & \approx 2.789523187\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 2592 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{5}^{*}$ | additive | -1 | 4 | 13 | 1 |
$3$ | $1$ | $IV^{*}$ | additive | -1 | 5 | 11 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 24.16.0-24.c.1.3, level \( 24 = 2^{3} \cdot 3 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 17 & 18 \\ 3 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 22 & 21 \\ 23 & 14 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 13 & 6 \\ 15 & 19 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 19 & 6 \\ 18 & 7 \end{array}\right)$.
The torsion field $K:=\Q(E[24])$ is a degree-$4608$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/24\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 243 = 3^{5} \) |
$3$ | additive | $8$ | \( 8 = 2^{3} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 3888v
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 486b2, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.3.1944.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.6.90699264.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.45349632.2 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.60466176.1 | \(\Z/6\Z\) | not in database |
$12$ | 12.4.12635683568857645056.6 | \(\Z/4\Z\) | not in database |
$12$ | 12.0.2056589122535424.21 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | 12.0.526486815369068544.56 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.458936503790258814279745536.2 | \(\Z/9\Z\) | not in database |
$18$ | 18.6.95503933319356810612703232.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | ord | ord | ss | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.