Properties

Label 388773.bb
Number of curves $3$
Conductor $388773$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 388773.bb have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(7\)\(1 + T\)
\(11\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 388773.bb do not have complex multiplication.

Modular form 388773.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{4} - q^{7} + 4 q^{13} + 4 q^{16} + q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 388773.bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
388773.bb1 388773bb3 \([0, 0, 1, -133522290, 568429625288]\) \(838870874148864000/40675641638471\) \(12765103055589737836401957\) \([]\) \(64385280\) \(3.5772\)  
388773.bb2 388773bb2 \([0, 0, 1, -21464190, -38065791085]\) \(31363160518656000/198257271191\) \(6913158714842120489133\) \([]\) \(21461760\) \(3.0279\)  
388773.bb3 388773bb1 \([0, 0, 1, -21431520, -38188058076]\) \(22759502184972288000/5831\) \(278909249157\) \([]\) \(7153920\) \(2.4786\) \(\Gamma_0(N)\)-optimal