Properties

Label 388416.g
Number of curves $1$
Conductor $388416$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 388416.g1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 388416.g do not have complex multiplication.

Modular form 388416.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 3 q^{5} - q^{7} + q^{9} + 5 q^{11} + 4 q^{13} + 3 q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 388416.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
388416.g1 388416g1 \([0, -1, 0, -268577, -479160159]\) \(-2343314/107163\) \(-97981968501949464576\) \([]\) \(13160448\) \(2.5160\) \(\Gamma_0(N)\)-optimal