Properties

Label 388416.fn
Number of curves $4$
Conductor $388416$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 388416.fn have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 388416.fn do not have complex multiplication.

Modular form 388416.2.a.fn

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + q^{7} + q^{9} + 4 q^{11} - 2 q^{13} - 2 q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 388416.fn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
388416.fn1 388416fn4 \([0, 1, 0, -146377729, -588577138273]\) \(438536015880092936/64602489661101\) \(51096684192288342129672192\) \([2]\) \(84934656\) \(3.6577\)  
388416.fn2 388416fn2 \([0, 1, 0, -39320569, 85818735431]\) \(68003243639904448/7163272192041\) \(708214688977595958595584\) \([2, 2]\) \(42467328\) \(3.3112\)  
388416.fn3 388416fn1 \([0, 1, 0, -38267164, 91100718782]\) \(4011705594213827392/52680152007\) \(81380531455964862912\) \([2]\) \(21233664\) \(2.9646\) \(\Gamma_0(N)\)-optimal
388416.fn4 388416fn3 \([0, 1, 0, 50882111, 422184529151]\) \(18419405270942584/108003564029403\) \(-85424323920056580220747776\) \([2]\) \(84934656\) \(3.6577\)