Properties

Label 388416.fj
Number of curves $4$
Conductor $388416$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 388416.fj have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 388416.fj do not have complex multiplication.

Modular form 388416.2.a.fj

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + q^{7} + q^{9} - 4 q^{11} + 6 q^{13} - 2 q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 388416.fj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
388416.fj1 388416fj4 \([0, 1, 0, -259329, -50916705]\) \(2438569736/21\) \(16609737080832\) \([2]\) \(2621440\) \(1.7045\)  
388416.fj2 388416fj2 \([0, 1, 0, -16569, -762489]\) \(5088448/441\) \(43600559837184\) \([2, 2]\) \(1310720\) \(1.3580\)  
388416.fj3 388416fj1 \([0, 1, 0, -3564, 67230]\) \(3241792/567\) \(875904103872\) \([2]\) \(655360\) \(1.0114\) \(\Gamma_0(N)\)-optimal
388416.fj4 388416fj3 \([0, 1, 0, 18111, -3502209]\) \(830584/7203\) \(-5697139818725376\) \([2]\) \(2621440\) \(1.7045\)