Properties

Label 388416.bn
Number of curves $1$
Conductor $388416$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 388416.bn1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 388416.bn do not have complex multiplication.

Modular form 388416.2.a.bn

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - q^{7} + q^{9} - q^{11} + q^{13} + q^{15} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 388416.bn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
388416.bn1 388416bn1 \([0, -1, 0, -109960261, 443851522909]\) \(-371806976516936704/89266779\) \(-35302326886731792384\) \([]\) \(24772608\) \(3.1288\) \(\Gamma_0(N)\)-optimal