Properties

Label 388080ix
Number of curves $4$
Conductor $388080$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ix1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 388080ix have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 388080ix do not have complex multiplication.

Modular form 388080.2.a.ix

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - q^{11} - 2 q^{13} + 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 388080ix

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
388080.ix4 388080ix1 \([0, 0, 0, 70413, -58777166]\) \(109902239/4312000\) \(-1514797112328192000\) \([2]\) \(5308416\) \(2.1683\) \(\Gamma_0(N)\)-optimal
388080.ix2 388080ix2 \([0, 0, 0, -1905267, -968775374]\) \(2177286259681/105875000\) \(37193679097344000000\) \([2]\) \(10616832\) \(2.5149\)  
388080.ix3 388080ix3 \([0, 0, 0, -635187, 1607708914]\) \(-80677568161/3131816380\) \(-1100200929676746670080\) \([2]\) \(15925248\) \(2.7177\)  
388080.ix1 388080ix4 \([0, 0, 0, -24837267, 47383523026]\) \(4823468134087681/30382271150\) \(10673232051018584678400\) \([2]\) \(31850496\) \(3.0642\)