sage:E = EllipticCurve("a1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 388080a1 has
rank \(0\).
| |
| Bad L-factors: |
| Prime |
L-Factor |
| \(2\) | \(1\) |
| \(3\) | \(1\) |
| \(5\) | \(1 + T\) |
| \(7\) | \(1\) |
| \(11\) | \(1 + T\) |
|
| |
| Good L-factors: |
| Prime |
L-Factor |
Isogeny Class over \(\mathbb{F}_p\) |
| \(13\) |
\( 1 + 7 T + 13 T^{2}\) |
1.13.h
|
| \(17\) |
\( 1 + 4 T + 17 T^{2}\) |
1.17.e
|
| \(19\) |
\( 1 + 6 T + 19 T^{2}\) |
1.19.g
|
| \(23\) |
\( 1 - 5 T + 23 T^{2}\) |
1.23.af
|
| \(29\) |
\( 1 - 9 T + 29 T^{2}\) |
1.29.aj
|
| $\cdots$ | $\cdots$ | $\cdots$ |
|
| |
| See L-function page for more information |
The elliptic curves in class 388080a do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 388080a
sage:E.isogeny_class().curves