Properties

Label 388080.nt
Number of curves $4$
Conductor $388080$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("nt1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 388080.nt have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 388080.nt do not have complex multiplication.

Modular form 388080.2.a.nt

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + q^{11} + 2 q^{13} - 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 388080.nt

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
388080.nt1 388080nt4 \([0, 0, 0, -11307387, -14634836566]\) \(455129268177961/4392300\) \(1543006344266956800\) \([2]\) \(14155776\) \(2.6514\)  
388080.nt2 388080nt2 \([0, 0, 0, -723387, -217311766]\) \(119168121961/10890000\) \(3825635564298240000\) \([2, 2]\) \(7077888\) \(2.3048\)  
388080.nt3 388080nt1 \([0, 0, 0, -158907, 20560106]\) \(1263214441/211200\) \(74194144277299200\) \([2]\) \(3538944\) \(1.9583\) \(\Gamma_0(N)\)-optimal
388080.nt4 388080nt3 \([0, 0, 0, 828933, -1023586774]\) \(179310732119/1392187500\) \(-489072728390400000000\) \([2]\) \(14155776\) \(2.6514\)