Show commands: SageMath
                    
            
    Rank
The elliptic curves in class 388080.gq have rank \(1\).
L-function data
| Bad L-factors: | 
        
  | |||||||||||||||||||||
| Good L-factors: | 
        
  | |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 388080.gq do not have complex multiplication.Modular form 388080.2.a.gq
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 388080.gq
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | 
|---|---|---|---|---|---|---|---|---|
| 388080.gq1 | 388080gq3 | \([0, 0, 0, -74511367203, 7828560497127202]\) | \(130231365028993807856757649/4753980000\) | \(1670063816341831680000\) | \([2]\) | \(566231040\) | \(4.4906\) | |
| 388080.gq2 | 388080gq4 | \([0, 0, 0, -4743897123, 117516946662178]\) | \(33608860073906150870929/2466782226562500000\) | \(866575740616740000000000000000\) | \([2]\) | \(566231040\) | \(4.4906\) | |
| 388080.gq3 | 388080gq2 | \([0, 0, 0, -4656967203, 122320885287202]\) | \(31794905164720991157649/192099600000000\) | \(67484211354220953600000000\) | \([2, 2]\) | \(283115520\) | \(4.1440\) | |
| 388080.gq4 | 388080gq1 | \([0, 0, 0, -285634083, 1985952893218]\) | \(-7336316844655213969/604492922880000\) | \(-212357173933546489774080000\) | \([2]\) | \(141557760\) | \(3.7975\) | \(\Gamma_0(N)\)-optimal |