Properties

Label 388080.gq
Number of curves $4$
Conductor $388080$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 388080.gq have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 388080.gq do not have complex multiplication.

Modular form 388080.2.a.gq

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + q^{11} + 2 q^{13} + 6 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 388080.gq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
388080.gq1 388080gq3 \([0, 0, 0, -74511367203, 7828560497127202]\) \(130231365028993807856757649/4753980000\) \(1670063816341831680000\) \([2]\) \(566231040\) \(4.4906\)  
388080.gq2 388080gq4 \([0, 0, 0, -4743897123, 117516946662178]\) \(33608860073906150870929/2466782226562500000\) \(866575740616740000000000000000\) \([2]\) \(566231040\) \(4.4906\)  
388080.gq3 388080gq2 \([0, 0, 0, -4656967203, 122320885287202]\) \(31794905164720991157649/192099600000000\) \(67484211354220953600000000\) \([2, 2]\) \(283115520\) \(4.1440\)  
388080.gq4 388080gq1 \([0, 0, 0, -285634083, 1985952893218]\) \(-7336316844655213969/604492922880000\) \(-212357173933546489774080000\) \([2]\) \(141557760\) \(3.7975\) \(\Gamma_0(N)\)-optimal