Properties

Label 388080.ba
Number of curves $4$
Conductor $388080$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ba1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 388080.ba have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 388080.ba do not have complex multiplication.

Modular form 388080.2.a.ba

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - q^{11} - 2 q^{13} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 388080.ba

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
388080.ba1 388080ba4 \([0, 0, 0, -1630083, -638194718]\) \(2727138195938/576489375\) \(101259791342519040000\) \([2]\) \(9437184\) \(2.5533\)  
388080.ba2 388080ba2 \([0, 0, 0, -518763, 135061738]\) \(175798419556/12006225\) \(1054440802409702400\) \([2, 2]\) \(4718592\) \(2.2067\)  
388080.ba3 388080ba1 \([0, 0, 0, -509943, 140161462]\) \(667932971344/3465\) \(76077979971840\) \([2]\) \(2359296\) \(1.8601\) \(\Gamma_0(N)\)-optimal
388080.ba4 388080ba3 \([0, 0, 0, 451437, 581935858]\) \(57925453822/866412855\) \(-152184565264149411840\) \([2]\) \(9437184\) \(2.5533\)