Show commands: SageMath
Rank
The elliptic curves in class 3870.s have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 3870.s do not have complex multiplication.Modular form 3870.2.a.s
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 3870.s
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 3870.s1 | 3870s4 | \([1, -1, 1, -46643, 3357227]\) | \(15393836938735081/2275690697640\) | \(1658978518579560\) | \([6]\) | \(23040\) | \(1.6451\) | |
| 3870.s2 | 3870s3 | \([1, -1, 1, -44843, 3666107]\) | \(13679527032530281/381633600\) | \(278210894400\) | \([6]\) | \(11520\) | \(1.2985\) | |
| 3870.s3 | 3870s2 | \([1, -1, 1, -12218, -516193]\) | \(276670733768281/336980250\) | \(245658602250\) | \([2]\) | \(7680\) | \(1.0958\) | |
| 3870.s4 | 3870s1 | \([1, -1, 1, -968, -3193]\) | \(137467988281/72562500\) | \(52898062500\) | \([2]\) | \(3840\) | \(0.74920\) | \(\Gamma_0(N)\)-optimal |