Properties

Label 3870.s
Number of curves $4$
Conductor $3870$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3870.s have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(43\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3870.s do not have complex multiplication.

Modular form 3870.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} + 2 q^{7} + q^{8} - q^{10} + 6 q^{11} + 2 q^{13} + 2 q^{14} + q^{16} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 3870.s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3870.s1 3870s4 \([1, -1, 1, -46643, 3357227]\) \(15393836938735081/2275690697640\) \(1658978518579560\) \([6]\) \(23040\) \(1.6451\)  
3870.s2 3870s3 \([1, -1, 1, -44843, 3666107]\) \(13679527032530281/381633600\) \(278210894400\) \([6]\) \(11520\) \(1.2985\)  
3870.s3 3870s2 \([1, -1, 1, -12218, -516193]\) \(276670733768281/336980250\) \(245658602250\) \([2]\) \(7680\) \(1.0958\)  
3870.s4 3870s1 \([1, -1, 1, -968, -3193]\) \(137467988281/72562500\) \(52898062500\) \([2]\) \(3840\) \(0.74920\) \(\Gamma_0(N)\)-optimal