Properties

Label 385434dq
Number of curves $4$
Conductor $385434$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 385434dq have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(7\)\(1\)
\(19\)\(1 + T\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 385434dq do not have complex multiplication.

Modular form 385434.2.a.dq

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 2 q^{5} + q^{8} - 2 q^{10} + 4 q^{11} + 2 q^{13} + q^{16} + 2 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 385434dq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
385434.dq3 385434dq1 \([1, -1, 1, -86666, 9818057]\) \(839362385737/2349312\) \(201491377258752\) \([2]\) \(1769472\) \(1.6170\) \(\Gamma_0(N)\)-optimal
385434.dq2 385434dq2 \([1, -1, 1, -121946, 1096841]\) \(2338337977417/1347477264\) \(115567898068972944\) \([2, 2]\) \(3538944\) \(1.9636\)  
385434.dq4 385434dq3 \([1, -1, 1, 486634, 8399801]\) \(148599082115063/86360598996\) \(-7406813583123414516\) \([2]\) \(7077888\) \(2.3102\)  
385434.dq1 385434dq4 \([1, -1, 1, -1295006, -564787303]\) \(2800418713303177/12058908372\) \(1034245794560865012\) \([2]\) \(7077888\) \(2.3102\)