Show commands: SageMath
Rank
The elliptic curves in class 385434dq have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 385434dq do not have complex multiplication.Modular form 385434.2.a.dq
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 385434dq
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
385434.dq3 | 385434dq1 | \([1, -1, 1, -86666, 9818057]\) | \(839362385737/2349312\) | \(201491377258752\) | \([2]\) | \(1769472\) | \(1.6170\) | \(\Gamma_0(N)\)-optimal |
385434.dq2 | 385434dq2 | \([1, -1, 1, -121946, 1096841]\) | \(2338337977417/1347477264\) | \(115567898068972944\) | \([2, 2]\) | \(3538944\) | \(1.9636\) | |
385434.dq4 | 385434dq3 | \([1, -1, 1, 486634, 8399801]\) | \(148599082115063/86360598996\) | \(-7406813583123414516\) | \([2]\) | \(7077888\) | \(2.3102\) | |
385434.dq1 | 385434dq4 | \([1, -1, 1, -1295006, -564787303]\) | \(2800418713303177/12058908372\) | \(1034245794560865012\) | \([2]\) | \(7077888\) | \(2.3102\) |