Properties

Label 384678.x
Number of curves $3$
Conductor $384678$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 384678.x have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1 - T\)
\(43\)\(1 - T\)
\(71\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 384678.x do not have complex multiplication.

Modular form 384678.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 3 q^{5} + q^{7} - q^{8} - 3 q^{10} + 6 q^{11} - 4 q^{13} - q^{14} + q^{16} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 384678.x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
384678.x1 384678x3 \([1, -1, 0, -68343947343, 6877004040813123]\) \(48427980631254958469835824847167473/153101623358112538524114\) \(111611083428064040584079106\) \([3]\) \(1209323520\) \(4.6476\)  
384678.x2 384678x2 \([1, -1, 0, -873512073, 8732490816357]\) \(101112050932948721991382242193/13327203141829750320519624\) \(9715531090393887983658805896\) \([3]\) \(403107840\) \(4.0983\)  
384678.x3 384678x1 \([1, -1, 0, -216721953, -1226379099267]\) \(1544204814149745316374461713/2295658741816117891584\) \(1673535222783949942964736\) \([]\) \(134369280\) \(3.5490\) \(\Gamma_0(N)\)-optimal