Properties

Label 383040.f
Number of curves $4$
Conductor $383040$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 383040.f have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 + T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 383040.f do not have complex multiplication.

Modular form 383040.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - q^{7} - 4 q^{11} - 2 q^{13} + 2 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 383040.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
383040.f1 383040f4 \([0, 0, 0, -3268908, -2274846768]\) \(20214562937713929/665000\) \(127083479040000\) \([2]\) \(5898240\) \(2.2070\)  
383040.f2 383040f2 \([0, 0, 0, -204588, -35441712]\) \(4955605568649/28302400\) \(5408672867942400\) \([2, 2]\) \(2949120\) \(1.8604\)  
383040.f3 383040f3 \([0, 0, 0, -89388, -75116592]\) \(-413327139849/12516028840\) \(-2391850359025827840\) \([2]\) \(5898240\) \(2.2070\)  
383040.f4 383040f1 \([0, 0, 0, -20268, 168912]\) \(4818245769/2723840\) \(520533930147840\) \([2]\) \(1474560\) \(1.5138\) \(\Gamma_0(N)\)-optimal