Properties

Label 382347.dr
Number of curves $1$
Conductor $382347$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 382347.dr1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(7\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 382347.dr do not have complex multiplication.

Modular form 382347.2.a.dr

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} + 2 q^{4} + 3 q^{5} + 6 q^{10} - 2 q^{11} - 6 q^{13} - 4 q^{16} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 382347.dr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
382347.dr1 382347dr1 \([0, 0, 1, -297381, 61929593]\) \(110592\) \(26299025280757341\) \([]\) \(6773760\) \(1.9732\) \(\Gamma_0(N)\)-optimal