Properties

Label 382347.cn
Number of curves $1$
Conductor $382347$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 382347.cn1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(7\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 382347.cn do not have complex multiplication.

Modular form 382347.2.a.cn

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - 4 q^{5} - 3 q^{8} - 4 q^{10} - 2 q^{11} - q^{13} - q^{16} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 382347.cn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
382347.cn1 382347cn1 \([1, -1, 0, -130104, 64542519]\) \(-147\) \(-1656838592687712483\) \([]\) \(5806080\) \(2.1793\) \(\Gamma_0(N)\)-optimal