Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
3822.a1 |
3822f3 |
3822.a |
3822f |
$3$ |
$9$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{27} \cdot 3 \cdot 7^{7} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$93312$ |
$2.124413$ |
$-1956469094246217097/36641439744$ |
$[1, 1, 0, -1276769, 554763189]$ |
\(y^2+xy=x^3+x^2-1276769x+554763189\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.2, 63.24.0-9.a.1.2, 312.8.0.?, $\ldots$ |
3822.a2 |
3822f2 |
3822.a |
3822f |
$3$ |
$9$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{9} \cdot 3^{3} \cdot 7^{9} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$6552$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$31104$ |
$1.575108$ |
$-198461344537/10417365504$ |
$[1, 1, 0, -5954, 1691124]$ |
\(y^2+xy=x^3+x^2-5954x+1691124\) |
3.12.0.a.1, 21.24.0-3.a.1.1, 312.24.0.?, 819.72.0.?, 2184.48.1.?, $\ldots$ |
3822.a3 |
3822f1 |
3822.a |
3822f |
$3$ |
$9$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{3} \cdot 3^{9} \cdot 7^{7} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$10368$ |
$1.025803$ |
$270840023/14329224$ |
$[1, 1, 0, 661, -61851]$ |
\(y^2+xy=x^3+x^2+661x-61851\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.1, 63.24.0-9.a.1.1, 312.8.0.?, $\ldots$ |
3822.b1 |
3822e1 |
3822.b |
3822e |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{26} \cdot 3^{5} \cdot 7^{3} \cdot 13^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2184$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$37440$ |
$1.777985$ |
$65352943209688399/35827476332544$ |
$[1, 1, 0, -58741, -1282259]$ |
\(y^2+xy=x^3+x^2-58741x-1282259\) |
2.3.0.a.1, 56.6.0.c.1, 312.6.0.?, 546.6.0.?, 2184.12.0.? |
3822.b2 |
3822e2 |
3822.b |
3822e |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{10} \cdot 7^{3} \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2184$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$74880$ |
$2.124557$ |
$3820420340137317041/2334869460099072$ |
$[1, 1, 0, 227979, -9826515]$ |
\(y^2+xy=x^3+x^2+227979x-9826515\) |
2.3.0.a.1, 56.6.0.b.1, 312.6.0.?, 1092.6.0.?, 2184.12.0.? |
3822.c1 |
3822b1 |
3822.c |
3822b |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{2} \cdot 3^{2} \cdot 7^{4} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$0.093537853$ |
$1$ |
|
$10$ |
$576$ |
$-0.151012$ |
$596183/468$ |
$[1, 1, 0, 24, 36]$ |
\(y^2+xy=x^3+x^2+24x+36\) |
52.2.0.a.1 |
3822.d1 |
3822g1 |
3822.d |
3822g |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{3} \cdot 3^{3} \cdot 7^{3} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$0.364127477$ |
$1$ |
|
$6$ |
$2880$ |
$0.684830$ |
$11743520417/80199288$ |
$[1, 1, 0, 332, -7496]$ |
\(y^2+xy=x^3+x^2+332x-7496\) |
2184.2.0.? |
3822.e1 |
3822h1 |
3822.e |
3822h |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{5} \cdot 3 \cdot 7^{7} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$0.360406495$ |
$1$ |
|
$4$ |
$1920$ |
$0.453700$ |
$-47045881/8736$ |
$[1, 1, 0, -368, 2976]$ |
\(y^2+xy=x^3+x^2-368x+2976\) |
2184.2.0.? |
3822.f1 |
3822a1 |
3822.f |
3822a |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{19} \cdot 3 \cdot 7^{8} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1.276688947$ |
$1$ |
|
$4$ |
$19152$ |
$1.602041$ |
$358321516679/265814016$ |
$[1, 1, 0, 26533, 894237]$ |
\(y^2+xy=x^3+x^2+26533x+894237\) |
24.2.0.b.1 |
3822.g1 |
3822c1 |
3822.g |
3822c |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3 \cdot 7^{9} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$28224$ |
$1.637554$ |
$-9591639636223/843648$ |
$[1, 1, 0, -151827, 22709037]$ |
\(y^2+xy=x^3+x^2-151827x+22709037\) |
2184.2.0.? |
3822.h1 |
3822d3 |
3822.h |
3822d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{2} \cdot 3^{12} \cdot 7^{7} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2184$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$18432$ |
$1.553598$ |
$828279937799497/193444524$ |
$[1, 1, 0, -95869, -11462975]$ |
\(y^2+xy=x^3+x^2-95869x-11462975\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 28.12.0-4.c.1.2, 52.12.0-4.c.1.1, $\ldots$ |
3822.h2 |
3822d2 |
3822.h |
3822d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{4} \cdot 3^{6} \cdot 7^{8} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$1092$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$9216$ |
$1.207026$ |
$281397674377/96589584$ |
$[1, 1, 0, -6689, -137115]$ |
\(y^2+xy=x^3+x^2-6689x-137115\) |
2.6.0.a.1, 12.12.0.b.1, 28.12.0-2.a.1.1, 52.12.0-2.a.1.1, 84.24.0.?, $\ldots$ |
3822.h3 |
3822d1 |
3822.h |
3822d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{8} \cdot 3^{3} \cdot 7^{7} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2184$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4608$ |
$0.860452$ |
$19968681097/628992$ |
$[1, 1, 0, -2769, 53397]$ |
\(y^2+xy=x^3+x^2-2769x+53397\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 52.12.0-4.c.1.2, 56.12.0-4.c.1.5, $\ldots$ |
3822.h4 |
3822d4 |
3822.h |
3822d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{2} \cdot 3^{3} \cdot 7^{10} \cdot 13^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2184$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$18432$ |
$1.553598$ |
$7264187703863/7406095788$ |
$[1, 1, 0, 19771, -925623]$ |
\(y^2+xy=x^3+x^2+19771x-925623\) |
2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 28.12.0-4.c.1.1, $\ldots$ |
3822.i1 |
3822i1 |
3822.i |
3822i |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{10} \cdot 3^{2} \cdot 7^{2} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$0.377362897$ |
$1$ |
|
$6$ |
$4800$ |
$0.878976$ |
$-19007021070457/3421836288$ |
$[1, 1, 0, -2034, -41292]$ |
\(y^2+xy=x^3+x^2-2034x-41292\) |
52.2.0.a.1 |
3822.j1 |
3822m3 |
3822.j |
3822m |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{4} \cdot 3^{5} \cdot 7^{6} \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2184$ |
$48$ |
$0$ |
$1.806158809$ |
$1$ |
|
$6$ |
$46080$ |
$1.941032$ |
$986551739719628473/111045168$ |
$[1, 0, 1, -1016237, -394396936]$ |
\(y^2+xy+y=x^3-1016237x-394396936\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0.h.1, 28.12.0-4.c.1.2, 84.24.0.?, $\ldots$ |
3822.j2 |
3822m4 |
3822.j |
3822m |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{4} \cdot 3^{20} \cdot 7^{6} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2184$ |
$48$ |
$0$ |
$0.451539702$ |
$1$ |
|
$10$ |
$46080$ |
$1.941032$ |
$1416134368422073/725251155408$ |
$[1, 0, 1, -114637, 5057336]$ |
\(y^2+xy+y=x^3-114637x+5057336\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 26.6.0.b.1, 28.12.0-4.c.1.1, $\ldots$ |
3822.j3 |
3822m2 |
3822.j |
3822m |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{8} \cdot 3^{10} \cdot 7^{6} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$1092$ |
$48$ |
$0$ |
$0.903079404$ |
$1$ |
|
$14$ |
$23040$ |
$1.594460$ |
$242702053576633/2554695936$ |
$[1, 0, 1, -63677, -6133480]$ |
\(y^2+xy+y=x^3-63677x-6133480\) |
2.6.0.a.1, 12.12.0.a.1, 28.12.0-2.a.1.1, 52.12.0.b.1, 84.24.0.?, $\ldots$ |
3822.j4 |
3822m1 |
3822.j |
3822m |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{16} \cdot 3^{5} \cdot 7^{6} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2184$ |
$48$ |
$0$ |
$1.806158809$ |
$1$ |
|
$5$ |
$11520$ |
$1.247885$ |
$-822656953/207028224$ |
$[1, 0, 1, -957, -237800]$ |
\(y^2+xy+y=x^3-957x-237800\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 56.12.0-4.c.1.5, 78.6.0.?, $\ldots$ |
3822.k1 |
3822j1 |
3822.k |
3822j |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{10} \cdot 3^{2} \cdot 7^{8} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$33600$ |
$1.851931$ |
$-19007021070457/3421836288$ |
$[1, 0, 1, -99692, 13864106]$ |
\(y^2+xy+y=x^3-99692x+13864106\) |
52.2.0.a.1 |
3822.l1 |
3822n1 |
3822.l |
3822n |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{19} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2736$ |
$0.629086$ |
$358321516679/265814016$ |
$[1, 0, 1, 541, -2530]$ |
\(y^2+xy+y=x^3+541x-2530\) |
24.2.0.b.1 |
3822.m1 |
3822o1 |
3822.m |
3822o |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3 \cdot 7^{3} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4032$ |
$0.664598$ |
$-9591639636223/843648$ |
$[1, 0, 1, -3099, -66650]$ |
\(y^2+xy+y=x^3-3099x-66650\) |
2184.2.0.? |
3822.n1 |
3822l1 |
3822.n |
3822l |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 3^{5} \cdot 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$0.168079577$ |
$1$ |
|
$6$ |
$5760$ |
$0.991134$ |
$-141339344329/2167074$ |
$[1, 0, 1, -5318, 150770]$ |
\(y^2+xy+y=x^3-5318x+150770\) |
2184.2.0.? |
3822.o1 |
3822k1 |
3822.o |
3822k |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{3} \cdot 3^{3} \cdot 7^{9} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1.717750362$ |
$1$ |
|
$4$ |
$20160$ |
$1.657784$ |
$11743520417/80199288$ |
$[1, 0, 1, 16242, 2619880]$ |
\(y^2+xy+y=x^3+16242x+2619880\) |
2184.2.0.? |
3822.p1 |
3822q1 |
3822.p |
3822q |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{26} \cdot 3^{5} \cdot 7^{9} \cdot 13^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2184$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$262080$ |
$2.750942$ |
$65352943209688399/35827476332544$ |
$[1, 0, 1, -2878335, 431179858]$ |
\(y^2+xy+y=x^3-2878335x+431179858\) |
2.3.0.a.1, 56.6.0.c.1, 312.6.0.?, 546.6.0.?, 2184.12.0.? |
3822.p2 |
3822q2 |
3822.p |
3822q |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{10} \cdot 7^{9} \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2184$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$524160$ |
$3.097515$ |
$3820420340137317041/2334869460099072$ |
$[1, 0, 1, 11170945, 3404007506]$ |
\(y^2+xy+y=x^3+11170945x+3404007506\) |
2.3.0.a.1, 56.6.0.b.1, 312.6.0.?, 1092.6.0.?, 2184.12.0.? |
3822.q1 |
3822p1 |
3822.q |
3822p |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{2} \cdot 3^{2} \cdot 7^{10} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4032$ |
$0.821943$ |
$596183/468$ |
$[1, 0, 1, 1150, -8872]$ |
\(y^2+xy+y=x^3+1150x-8872\) |
52.2.0.a.1 |
3822.r1 |
3822y1 |
3822.r |
3822y |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 3 \cdot 7^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2240$ |
$0.508920$ |
$68921/78$ |
$[1, 1, 1, 293, -1765]$ |
\(y^2+xy+y=x^3+x^2+293x-1765\) |
2184.2.0.? |
3822.s1 |
3822t1 |
3822.s |
3822t |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{3} \cdot 3^{3} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$0.614430587$ |
$1$ |
|
$4$ |
$1008$ |
$-0.108631$ |
$-24100657/36504$ |
$[1, 1, 1, -22, -85]$ |
\(y^2+xy+y=x^3+x^2-22x-85\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 24.8.0.d.1, 168.16.0.? |
3822.s2 |
3822t2 |
3822.s |
3822t |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 3 \cdot 7^{2} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$1.843291761$ |
$1$ |
|
$0$ |
$3024$ |
$0.440675$ |
$14991903983/28960854$ |
$[1, 1, 1, 188, 1595]$ |
\(y^2+xy+y=x^3+x^2+188x+1595\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 24.8.0.d.1, 168.16.0.? |
3822.t1 |
3822x3 |
3822.t |
3822x |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2 \cdot 3 \cdot 7^{10} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$2184$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$9216$ |
$1.096928$ |
$8020417344913/187278$ |
$[1, 1, 1, -20434, -1132783]$ |
\(y^2+xy+y=x^3+x^2-20434x-1132783\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 56.24.0-56.bb.1.13, 312.24.0.?, $\ldots$ |
3822.t2 |
3822x2 |
3822.t |
3822x |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{2} \cdot 3^{2} \cdot 7^{8} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$2184$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$4608$ |
$0.750354$ |
$2181825073/298116$ |
$[1, 1, 1, -1324, -16759]$ |
\(y^2+xy+y=x^3+x^2-1324x-16759\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 56.24.0-56.a.1.4, 312.24.0.?, 1092.24.0.?, $\ldots$ |
3822.t3 |
3822x1 |
3822.t |
3822x |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{4} \cdot 3 \cdot 7^{7} \cdot 13 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$2184$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$2304$ |
$0.403780$ |
$38272753/4368$ |
$[1, 1, 1, -344, 2057]$ |
\(y^2+xy+y=x^3+x^2-344x+2057\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 56.24.0-56.bb.1.2, 312.24.0.?, 546.6.0.?, $\ldots$ |
3822.t4 |
3822x4 |
3822.t |
3822x |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 3^{4} \cdot 7^{7} \cdot 13^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$2184$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9216$ |
$1.096928$ |
$8780064047/32388174$ |
$[1, 1, 1, 2106, -85359]$ |
\(y^2+xy+y=x^3+x^2+2106x-85359\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 56.24.0-56.v.1.1, 312.24.0.?, 2184.48.0.? |
3822.u1 |
3822r1 |
3822.u |
3822r |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{4} \cdot 3^{8} \cdot 7^{8} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10752$ |
$1.167688$ |
$-1071912625/1364688$ |
$[1, 1, 1, -3823, -164347]$ |
\(y^2+xy+y=x^3+x^2-3823x-164347\) |
52.2.0.a.1 |
3822.v1 |
3822u1 |
3822.v |
3822u |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{5} \cdot 3^{17} \cdot 7^{2} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12240$ |
$1.276497$ |
$-6394640503489/698390001504$ |
$[1, 1, 1, -1415, -282787]$ |
\(y^2+xy+y=x^3+x^2-1415x-282787\) |
24.2.0.b.1 |
3822.w1 |
3822v2 |
3822.w |
3822v |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 3 \cdot 7^{7} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.48.0.2 |
7B.1.4 |
$2184$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$395136$ |
$3.019505$ |
$-5486773802537974663600129/2635437714$ |
$[1, 1, 1, -180050305, 929830670369]$ |
\(y^2+xy+y=x^3+x^2-180050305x+929830670369\) |
7.48.0-7.a.2.1, 2184.96.2.? |
3822.w2 |
3822v1 |
3822.w |
3822v |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{7} \cdot 7^{13} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.48.0.4 |
7B.1.6 |
$2184$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$56448$ |
$2.046547$ |
$40251338884511/2997011332224$ |
$[1, 1, 1, 34985, 28472429]$ |
\(y^2+xy+y=x^3+x^2+34985x+28472429\) |
7.48.0-7.a.1.1, 2184.96.2.? |
3822.x1 |
3822w1 |
3822.x |
3822w |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{6} \cdot 3^{9} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2184$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$8640$ |
$1.164387$ |
$16728308209329751/16376256$ |
$[1, 1, 1, -37297, 2756879]$ |
\(y^2+xy+y=x^3+x^2-37297x+2756879\) |
2.3.0.a.1, 56.6.0.c.1, 312.6.0.?, 546.6.0.?, 2184.12.0.? |
3822.x2 |
3822w2 |
3822.x |
3822w |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{3} \cdot 3^{18} \cdot 7^{3} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2184$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17280$ |
$1.510962$ |
$-16354376146655191/523792501128$ |
$[1, 1, 1, -37017, 2800671]$ |
\(y^2+xy+y=x^3+x^2-37017x+2800671\) |
2.3.0.a.1, 56.6.0.b.1, 312.6.0.?, 1092.6.0.?, 2184.12.0.? |
3822.y1 |
3822s1 |
3822.y |
3822s |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{11} \cdot 3^{5} \cdot 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1.048334100$ |
$1$ |
|
$4$ |
$24640$ |
$1.457436$ |
$-4027268071/6469632$ |
$[1, 1, 1, -11369, -911401]$ |
\(y^2+xy+y=x^3+x^2-11369x-911401\) |
2184.2.0.? |
3822.z1 |
3822z1 |
3822.z |
3822z |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{16} \cdot 3^{4} \cdot 7^{10} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$64512$ |
$1.904982$ |
$-2380771254001/69009408$ |
$[1, 1, 1, -182526, -30833349]$ |
\(y^2+xy+y=x^3+x^2-182526x-30833349\) |
52.2.0.a.1 |
3822.ba1 |
3822bb1 |
3822.ba |
3822bb |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{16} \cdot 3^{4} \cdot 7^{4} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$0.025382327$ |
$1$ |
|
$20$ |
$9216$ |
$0.932026$ |
$-2380771254001/69009408$ |
$[1, 0, 0, -3725, 89361]$ |
\(y^2+xy=x^3-3725x+89361\) |
52.2.0.a.1 |
3822.bb1 |
3822bh1 |
3822.bb |
3822bh |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{11} \cdot 3^{5} \cdot 7^{3} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$0.035595283$ |
$1$ |
|
$16$ |
$3520$ |
$0.484480$ |
$-4027268071/6469632$ |
$[1, 0, 0, -232, 2624]$ |
\(y^2+xy=x^3-232x+2624\) |
2184.2.0.? |
3822.bc1 |
3822bg1 |
3822.bc |
3822bg |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{17} \cdot 3^{7} \cdot 7^{7} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$0.011431035$ |
$1$ |
|
$30$ |
$228480$ |
$2.662235$ |
$-112205650221491190337/745029571313664$ |
$[1, 0, 0, -4923717, 4228856001]$ |
\(y^2+xy=x^3-4923717x+4228856001\) |
2184.2.0.? |
3822.bd1 |
3822bd1 |
3822.bd |
3822bd |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( 2^{6} \cdot 3^{9} \cdot 7^{9} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2184$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$60480$ |
$2.137344$ |
$16728308209329751/16376256$ |
$[1, 0, 0, -1827554, -951092220]$ |
\(y^2+xy=x^3-1827554x-951092220\) |
2.3.0.a.1, 56.6.0.c.1, 312.6.0.?, 546.6.0.?, 2184.12.0.? |
3822.bd2 |
3822bd2 |
3822.bd |
3822bd |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{3} \cdot 3^{18} \cdot 7^{9} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2184$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$120960$ |
$2.483917$ |
$-16354376146655191/523792501128$ |
$[1, 0, 0, -1813834, -966071716]$ |
\(y^2+xy=x^3-1813834x-966071716\) |
2.3.0.a.1, 56.6.0.b.1, 312.6.0.?, 1092.6.0.?, 2184.12.0.? |
3822.be1 |
3822ba1 |
3822.be |
3822ba |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{5} \cdot 3^{17} \cdot 7^{8} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$0.054578278$ |
$1$ |
|
$14$ |
$85680$ |
$2.249451$ |
$-6394640503489/698390001504$ |
$[1, 0, 0, -69336, 96787872]$ |
\(y^2+xy=x^3-69336x+96787872\) |
24.2.0.b.1 |
3822.bf1 |
3822bf1 |
3822.bf |
3822bf |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{4} \cdot 3^{8} \cdot 7^{2} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$0.102873169$ |
$1$ |
|
$8$ |
$1536$ |
$0.194733$ |
$-1071912625/1364688$ |
$[1, 0, 0, -78, 468]$ |
\(y^2+xy=x^3-78x+468\) |
52.2.0.a.1 |
3822.bg1 |
3822be1 |
3822.bg |
3822be |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 3 \cdot 7^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2184$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$320$ |
$-0.464036$ |
$68921/78$ |
$[1, 0, 0, 6, 6]$ |
\(y^2+xy=x^3+6x+6\) |
2184.2.0.? |