Learn more

Refine search


Results (1-50 of 52 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
3822.a1 3822.a \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1276769, 554763189]$ \(y^2+xy=x^3+x^2-1276769x+554763189\) 3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.2, 63.24.0-9.a.1.2, 312.8.0.?, $\ldots$
3822.a2 3822.a \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -5954, 1691124]$ \(y^2+xy=x^3+x^2-5954x+1691124\) 3.12.0.a.1, 21.24.0-3.a.1.1, 312.24.0.?, 819.72.0.?, 2184.48.1.?, $\ldots$
3822.a3 3822.a \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 661, -61851]$ \(y^2+xy=x^3+x^2+661x-61851\) 3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.1, 63.24.0-9.a.1.1, 312.8.0.?, $\ldots$
3822.b1 3822.b \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -58741, -1282259]$ \(y^2+xy=x^3+x^2-58741x-1282259\) 2.3.0.a.1, 56.6.0.c.1, 312.6.0.?, 546.6.0.?, 2184.12.0.?
3822.b2 3822.b \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 227979, -9826515]$ \(y^2+xy=x^3+x^2+227979x-9826515\) 2.3.0.a.1, 56.6.0.b.1, 312.6.0.?, 1092.6.0.?, 2184.12.0.?
3822.c1 3822.c \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.093537853$ $[1, 1, 0, 24, 36]$ \(y^2+xy=x^3+x^2+24x+36\) 52.2.0.a.1
3822.d1 3822.d \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.364127477$ $[1, 1, 0, 332, -7496]$ \(y^2+xy=x^3+x^2+332x-7496\) 2184.2.0.?
3822.e1 3822.e \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.360406495$ $[1, 1, 0, -368, 2976]$ \(y^2+xy=x^3+x^2-368x+2976\) 2184.2.0.?
3822.f1 3822.f \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.276688947$ $[1, 1, 0, 26533, 894237]$ \(y^2+xy=x^3+x^2+26533x+894237\) 24.2.0.b.1
3822.g1 3822.g \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -151827, 22709037]$ \(y^2+xy=x^3+x^2-151827x+22709037\) 2184.2.0.?
3822.h1 3822.h \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -95869, -11462975]$ \(y^2+xy=x^3+x^2-95869x-11462975\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 28.12.0-4.c.1.2, 52.12.0-4.c.1.1, $\ldots$
3822.h2 3822.h \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -6689, -137115]$ \(y^2+xy=x^3+x^2-6689x-137115\) 2.6.0.a.1, 12.12.0.b.1, 28.12.0-2.a.1.1, 52.12.0-2.a.1.1, 84.24.0.?, $\ldots$
3822.h3 3822.h \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -2769, 53397]$ \(y^2+xy=x^3+x^2-2769x+53397\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 52.12.0-4.c.1.2, 56.12.0-4.c.1.5, $\ldots$
3822.h4 3822.h \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 19771, -925623]$ \(y^2+xy=x^3+x^2+19771x-925623\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 28.12.0-4.c.1.1, $\ldots$
3822.i1 3822.i \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.377362897$ $[1, 1, 0, -2034, -41292]$ \(y^2+xy=x^3+x^2-2034x-41292\) 52.2.0.a.1
3822.j1 3822.j \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.806158809$ $[1, 0, 1, -1016237, -394396936]$ \(y^2+xy+y=x^3-1016237x-394396936\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0.h.1, 28.12.0-4.c.1.2, 84.24.0.?, $\ldots$
3822.j2 3822.j \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.451539702$ $[1, 0, 1, -114637, 5057336]$ \(y^2+xy+y=x^3-114637x+5057336\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 26.6.0.b.1, 28.12.0-4.c.1.1, $\ldots$
3822.j3 3822.j \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.903079404$ $[1, 0, 1, -63677, -6133480]$ \(y^2+xy+y=x^3-63677x-6133480\) 2.6.0.a.1, 12.12.0.a.1, 28.12.0-2.a.1.1, 52.12.0.b.1, 84.24.0.?, $\ldots$
3822.j4 3822.j \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.806158809$ $[1, 0, 1, -957, -237800]$ \(y^2+xy+y=x^3-957x-237800\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 56.12.0-4.c.1.5, 78.6.0.?, $\ldots$
3822.k1 3822.k \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -99692, 13864106]$ \(y^2+xy+y=x^3-99692x+13864106\) 52.2.0.a.1
3822.l1 3822.l \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 541, -2530]$ \(y^2+xy+y=x^3+541x-2530\) 24.2.0.b.1
3822.m1 3822.m \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -3099, -66650]$ \(y^2+xy+y=x^3-3099x-66650\) 2184.2.0.?
3822.n1 3822.n \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.168079577$ $[1, 0, 1, -5318, 150770]$ \(y^2+xy+y=x^3-5318x+150770\) 2184.2.0.?
3822.o1 3822.o \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.717750362$ $[1, 0, 1, 16242, 2619880]$ \(y^2+xy+y=x^3+16242x+2619880\) 2184.2.0.?
3822.p1 3822.p \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -2878335, 431179858]$ \(y^2+xy+y=x^3-2878335x+431179858\) 2.3.0.a.1, 56.6.0.c.1, 312.6.0.?, 546.6.0.?, 2184.12.0.?
3822.p2 3822.p \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 11170945, 3404007506]$ \(y^2+xy+y=x^3+11170945x+3404007506\) 2.3.0.a.1, 56.6.0.b.1, 312.6.0.?, 1092.6.0.?, 2184.12.0.?
3822.q1 3822.q \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 1150, -8872]$ \(y^2+xy+y=x^3+1150x-8872\) 52.2.0.a.1
3822.r1 3822.r \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 293, -1765]$ \(y^2+xy+y=x^3+x^2+293x-1765\) 2184.2.0.?
3822.s1 3822.s \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.614430587$ $[1, 1, 1, -22, -85]$ \(y^2+xy+y=x^3+x^2-22x-85\) 3.4.0.a.1, 21.8.0-3.a.1.1, 24.8.0.d.1, 168.16.0.?
3822.s2 3822.s \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.843291761$ $[1, 1, 1, 188, 1595]$ \(y^2+xy+y=x^3+x^2+188x+1595\) 3.4.0.a.1, 21.8.0-3.a.1.2, 24.8.0.d.1, 168.16.0.?
3822.t1 3822.t \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -20434, -1132783]$ \(y^2+xy+y=x^3+x^2-20434x-1132783\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 56.24.0-56.bb.1.13, 312.24.0.?, $\ldots$
3822.t2 3822.t \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -1324, -16759]$ \(y^2+xy+y=x^3+x^2-1324x-16759\) 2.6.0.a.1, 4.12.0-2.a.1.1, 56.24.0-56.a.1.4, 312.24.0.?, 1092.24.0.?, $\ldots$
3822.t3 3822.t \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, -344, 2057]$ \(y^2+xy+y=x^3+x^2-344x+2057\) 2.3.0.a.1, 4.12.0-4.c.1.1, 56.24.0-56.bb.1.2, 312.24.0.?, 546.6.0.?, $\ldots$
3822.t4 3822.t \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 2106, -85359]$ \(y^2+xy+y=x^3+x^2+2106x-85359\) 2.3.0.a.1, 4.12.0-4.c.1.2, 56.24.0-56.v.1.1, 312.24.0.?, 2184.48.0.?
3822.u1 3822.u \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -3823, -164347]$ \(y^2+xy+y=x^3+x^2-3823x-164347\) 52.2.0.a.1
3822.v1 3822.v \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -1415, -282787]$ \(y^2+xy+y=x^3+x^2-1415x-282787\) 24.2.0.b.1
3822.w1 3822.w \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -180050305, 929830670369]$ \(y^2+xy+y=x^3+x^2-180050305x+929830670369\) 7.48.0-7.a.2.1, 2184.96.2.?
3822.w2 3822.w \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 34985, 28472429]$ \(y^2+xy+y=x^3+x^2+34985x+28472429\) 7.48.0-7.a.1.1, 2184.96.2.?
3822.x1 3822.x \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -37297, 2756879]$ \(y^2+xy+y=x^3+x^2-37297x+2756879\) 2.3.0.a.1, 56.6.0.c.1, 312.6.0.?, 546.6.0.?, 2184.12.0.?
3822.x2 3822.x \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -37017, 2800671]$ \(y^2+xy+y=x^3+x^2-37017x+2800671\) 2.3.0.a.1, 56.6.0.b.1, 312.6.0.?, 1092.6.0.?, 2184.12.0.?
3822.y1 3822.y \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.048334100$ $[1, 1, 1, -11369, -911401]$ \(y^2+xy+y=x^3+x^2-11369x-911401\) 2184.2.0.?
3822.z1 3822.z \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -182526, -30833349]$ \(y^2+xy+y=x^3+x^2-182526x-30833349\) 52.2.0.a.1
3822.ba1 3822.ba \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.025382327$ $[1, 0, 0, -3725, 89361]$ \(y^2+xy=x^3-3725x+89361\) 52.2.0.a.1
3822.bb1 3822.bb \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.035595283$ $[1, 0, 0, -232, 2624]$ \(y^2+xy=x^3-232x+2624\) 2184.2.0.?
3822.bc1 3822.bc \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.011431035$ $[1, 0, 0, -4923717, 4228856001]$ \(y^2+xy=x^3-4923717x+4228856001\) 2184.2.0.?
3822.bd1 3822.bd \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -1827554, -951092220]$ \(y^2+xy=x^3-1827554x-951092220\) 2.3.0.a.1, 56.6.0.c.1, 312.6.0.?, 546.6.0.?, 2184.12.0.?
3822.bd2 3822.bd \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -1813834, -966071716]$ \(y^2+xy=x^3-1813834x-966071716\) 2.3.0.a.1, 56.6.0.b.1, 312.6.0.?, 1092.6.0.?, 2184.12.0.?
3822.be1 3822.be \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.054578278$ $[1, 0, 0, -69336, 96787872]$ \(y^2+xy=x^3-69336x+96787872\) 24.2.0.b.1
3822.bf1 3822.bf \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.102873169$ $[1, 0, 0, -78, 468]$ \(y^2+xy=x^3-78x+468\) 52.2.0.a.1
3822.bg1 3822.bg \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 6, 6]$ \(y^2+xy=x^3+6x+6\) 2184.2.0.?
Next   displayed columns for results