Properties

Label 381938e
Number of curves $2$
Conductor $381938$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 381938e have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(19\)\(1\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 381938e do not have complex multiplication.

Modular form 381938.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - 3 q^{5} + q^{6} - 2 q^{7} - q^{8} - 2 q^{9} + 3 q^{10} + 3 q^{11} - q^{12} - 2 q^{13} + 2 q^{14} + 3 q^{15} + q^{16} + 2 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 381938e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
381938.e2 381938e1 \([1, 1, 0, -1514197179, -22506545794211]\) \(55129288688387857/484804919296\) \(3376413591116521341781540864\) \([]\) \(255467520\) \(4.1059\) \(\Gamma_0(N)\)-optimal
381938.e1 381938e2 \([1, 1, 0, -122389935419, -16480410151389731]\) \(29112011033527546515217/20192896\) \(140632996458468426523264\) \([]\) \(766402560\) \(4.6552\)