Properties

Label 381480.s
Number of curves $4$
Conductor $381480$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 381480.s have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(11\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 381480.s do not have complex multiplication.

Modular form 381480.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + 4 q^{7} + q^{9} + q^{11} - 2 q^{13} + q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 381480.s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
381480.s1 381480s3 \([0, -1, 0, -589656, 95509116]\) \(917333238244/372086055\) \(9196802894336302080\) \([2]\) \(8847360\) \(2.3366\)  
381480.s2 381480s2 \([0, -1, 0, -271756, -53395244]\) \(359194138576/7868025\) \(48618239060793600\) \([2, 2]\) \(4423680\) \(1.9900\)  
381480.s3 381480s1 \([0, -1, 0, -270311, -54003300]\) \(5655916189696/2805\) \(1083294096720\) \([2]\) \(2211840\) \(1.6434\) \(\Gamma_0(N)\)-optimal
381480.s4 381480s4 \([0, -1, 0, 23024, -163407140]\) \(54607676/466681875\) \(-11534915541874560000\) \([2]\) \(8847360\) \(2.3366\)