Properties

Label 381150bg
Number of curves $1$
Conductor $381150$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 381150bg1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 381150bg do not have complex multiplication.

Modular form 381150.2.a.bg

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{7} - q^{8} - 3 q^{13} + q^{14} + q^{16} + 7 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 381150bg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
381150.bg1 381150bg1 \([1, -1, 0, 4878, 374996]\) \(10733445/57344\) \(-68572165939200\) \([]\) \(1597440\) \(1.3370\) \(\Gamma_0(N)\)-optimal