Properties

Label 38115.l
Number of curves $4$
Conductor $38115$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 38115.l have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 38115.l do not have complex multiplication.

Modular form 38115.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - q^{5} + q^{7} + 3 q^{8} + q^{10} + 6 q^{13} - q^{14} - q^{16} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 38115.l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
38115.l1 38115t4 \([1, -1, 1, -11180423, 14391955306]\) \(119678115308998401/1925\) \(2486075840325\) \([2]\) \(983040\) \(2.3772\)  
38115.l2 38115t3 \([1, -1, 1, -758693, 184190482]\) \(37397086385121/10316796875\) \(13323812706741796875\) \([2]\) \(983040\) \(2.3772\)  
38115.l3 38115t2 \([1, -1, 1, -698798, 224990956]\) \(29220958012401/3705625\) \(4785695992625625\) \([2, 2]\) \(491520\) \(2.0306\)  
38115.l4 38115t1 \([1, -1, 1, -39953, 4146112]\) \(-5461074081/2562175\) \(-3308966943472575\) \([2]\) \(245760\) \(1.6840\) \(\Gamma_0(N)\)-optimal