Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-20631x+851690\)
|
(homogenize, simplify) |
\(y^2z=x^3-20631xz^2+851690z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-20631x+851690\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1567, 61776)$ | $5.0400440107148624709767065874$ | $\infty$ |
$(46, 0)$ | $0$ | $2$ |
$(115, 0)$ | $0$ | $2$ |
Integral points
\( \left(-161, 0\right) \), \( \left(46, 0\right) \), \( \left(115, 0\right) \), \((1567,\pm 61776)\)
Invariants
Conductor: | $N$ | = | \( 38088 \) | = | $2^{3} \cdot 3^{2} \cdot 23^{2}$ |
|
Discriminant: | $\Delta$ | = | $248643447738624$ | = | $2^{8} \cdot 3^{8} \cdot 23^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{35152}{9} \) | = | $2^{4} \cdot 3^{-2} \cdot 13^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.4717009662187724184419883575$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.1074504064531541456038320912$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.972547111469975$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.926678966107607$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.0400440107148624709767065874$ |
|
Real period: | $\Omega$ | ≈ | $0.51922795183410898322190355559$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{2}\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.2338634576744921424461021101 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.233863458 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.519228 \cdot 5.040044 \cdot 32}{4^2} \\ & \approx 5.233863458\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 90112 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{1}^{*}$ | additive | 1 | 3 | 8 | 0 |
$3$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
$23$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.48.0.138 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 552 = 2^{3} \cdot 3 \cdot 23 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 505 & 46 \\ 138 & 413 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 548 & 549 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 461 & 368 \\ 46 & 507 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 185 & 0 \\ 184 & 461 \end{array}\right),\left(\begin{array}{rr} 455 & 0 \\ 0 & 551 \end{array}\right),\left(\begin{array}{rr} 545 & 8 \\ 544 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[552])$ is a degree-$102592512$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/552\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 4761 = 3^{2} \cdot 23^{2} \) |
$3$ | additive | $8$ | \( 4232 = 2^{3} \cdot 23^{2} \) |
$23$ | additive | $266$ | \( 72 = 2^{3} \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 38088i
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 24a1, its twist by $69$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{69}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{-23})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{23})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.5802782976.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.835600748544.11 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.8.1485512441856.2 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.1485512441856.8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.2.50762745474048.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | 16.0.2206747214908975780724736.1 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | ord | ss | ord | ord | ord | ord | add | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | - | - | 3 | 1,1 | 1 | 1 | 1 | 1 | - | 1 | 1 | 3 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | - | - | 0 | 0,0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.