Properties

Label 379200.cd
Number of curves $2$
Conductor $379200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 379200.cd have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(79\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 379200.cd do not have complex multiplication.

Modular form 379200.2.a.cd

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{7} + q^{9} + 3 q^{11} - q^{13} - 3 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 379200.cd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
379200.cd1 379200cd2 \([0, -1, 0, -3628390636033, 2660236387307691937]\) \(-1289751009768313401479442908608441/2963943305271752785920000\) \(-12140311778393099411128320000000000\) \([]\) \(4942135296\) \(5.7837\)  
379200.cd2 379200cd1 \([0, -1, 0, -30775636033, 5971535432691937]\) \(-787018381229524347427258441/3305471612148000000000000\) \(-13539211723358208000000000000000000\) \([]\) \(1647378432\) \(5.2344\) \(\Gamma_0(N)\)-optimal