Properties

Label 374850.dd
Number of curves $1$
Conductor $374850$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 374850.dd1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 374850.dd do not have complex multiplication.

Modular form 374850.2.a.dd

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{8} - q^{11} - 3 q^{13} + q^{16} + q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 374850.dd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
374850.dd1 374850dd1 \([1, -1, 0, -64542, -8219884]\) \(-599077107/243712\) \(-12096199584000000\) \([]\) \(2365440\) \(1.7944\) \(\Gamma_0(N)\)-optimal