Properties

Label 374790bb
Number of curves $1$
Conductor $374790$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 374790bb1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(13\)\(1 + T\)
\(31\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 7 T + 23 T^{2}\) 1.23.h
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 374790bb do not have complex multiplication.

Modular form 374790.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + 4 q^{7} - q^{8} + q^{9} - q^{10} - 2 q^{11} - q^{12} - q^{13} - 4 q^{14} - q^{15} + q^{16} - 2 q^{17} - q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 374790bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
374790.bb1 374790bb1 \([1, 1, 0, -108532957, 435253430839]\) \(-172501027721881/44489250\) \(-36464647766560600889250\) \([]\) \(77405760\) \(3.3148\) \(\Gamma_0(N)\)-optimal