Properties

Label 374790.t
Number of curves $1$
Conductor $374790$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 374790.t1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(13\)\(1 + T\)
\(31\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 5 T + 7 T^{2}\) 1.7.f
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 374790.t do not have complex multiplication.

Modular form 374790.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - 5 q^{7} - q^{8} + q^{9} - q^{10} - q^{11} - q^{12} - q^{13} + 5 q^{14} - q^{15} + q^{16} + 6 q^{17} - q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 374790.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
374790.t1 374790t1 \([1, 1, 0, -62356907, -189811440549]\) \(-32716021186681/51333750\) \(-42074593576800693333750\) \([]\) \(88089600\) \(3.2397\) \(\Gamma_0(N)\)-optimal