Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+2292x-117232\)
|
(homogenize, simplify) |
\(y^2z=x^3+2292xz^2-117232z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+2292x-117232\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(64, 540)$ | $1.2061084179699589121750003777$ | $\infty$ |
$(37, 135)$ | $2.4393521155611216037942610201$ | $\infty$ |
$(34, 0)$ | $0$ | $2$ |
Integral points
\( \left(34, 0\right) \), \((37,\pm 135)\), \((64,\pm 540)\), \((98,\pm 1024)\), \((124,\pm 1440)\), \((226,\pm 3456)\), \((524,\pm 12040)\), \((901,\pm 27081)\), \((1954,\pm 86400)\)
Invariants
Conductor: | $N$ | = | \( 37440 \) | = | $2^{6} \cdot 3^{2} \cdot 5 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $-6707714457600$ | = | $-1 \cdot 2^{20} \cdot 3^{9} \cdot 5^{2} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{6967871}{35100} \) | = | $2^{-2} \cdot 3^{-3} \cdot 5^{-2} \cdot 13^{-1} \cdot 191^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.1434094882300466063331800371$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.44561742694392620349029076355$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8907896678438774$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.5009718055423513$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.5969530455977469451898461478$ |
|
Real period: | $\Omega$ | ≈ | $0.37694328428001300476418054826$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2^{2}\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $7.8312320810287768164011496829 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.831232081 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.376943 \cdot 2.596953 \cdot 32}{2^2} \\ & \approx 7.831232081\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 73728 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{10}^{*}$ | additive | -1 | 6 | 20 | 2 |
$3$ | $4$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
$5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 937 & 4 \\ 314 & 9 \end{array}\right),\left(\begin{array}{rr} 781 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1042 & 1 \\ 1039 & 0 \end{array}\right),\left(\begin{array}{rr} 602 & 1 \\ 479 & 0 \end{array}\right),\left(\begin{array}{rr} 1557 & 4 \\ 1556 & 5 \end{array}\right),\left(\begin{array}{rr} 977 & 586 \\ 584 & 975 \end{array}\right)$.
The torsion field $K:=\Q(E[1560])$ is a degree-$77290536960$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1560\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 117 = 3^{2} \cdot 13 \) |
$3$ | additive | $6$ | \( 4160 = 2^{6} \cdot 5 \cdot 13 \) |
$5$ | nonsplit multiplicative | $6$ | \( 7488 = 2^{6} \cdot 3^{2} \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 37440em
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 390e1, its twist by $24$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-39}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.2.249600.2 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.360319361126400.18 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.94758543360000.6 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | nonsplit | ord | ord | split | ord | ord | ord | ord | ss | ord | ord | ord | ss |
$\lambda$-invariant(s) | - | - | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2,2 | 2 | 2 | 2 | 2,2 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.