Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+2302548x+50666704\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+2302548xz^2+50666704z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+2302548x+50666704\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-22, 0)$ | $0$ | $2$ |
Integral points
\( \left(-22, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 37440 \) | = | $2^{6} \cdot 3^{2} \cdot 5 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $-782387814334464000000$ | = | $-1 \cdot 2^{28} \cdot 3^{15} \cdot 5^{6} \cdot 13 $ |
|
| j-invariant: | $j$ | = | \( \frac{7064514799444439}{4094064000000} \) | = | $2^{-10} \cdot 3^{-9} \cdot 5^{-6} \cdot 13^{-1} \cdot 17^{3} \cdot 11287^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6985332341408866141304510393$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1095063189669138043069802387$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.102611128088335$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.276312659599003$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.095656478313527579442677356228$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 48 $ = $ 2^{2}\cdot2\cdot( 2 \cdot 3 )\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.1478777397623309533121282747 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.147877740 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.095656 \cdot 1.000000 \cdot 48}{2^2} \\ & \approx 1.147877740\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1105920 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{18}^{*}$ | additive | -1 | 6 | 28 | 10 |
| $3$ | $2$ | $I_{9}^{*}$ | additive | -1 | 2 | 15 | 9 |
| $5$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
| $13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 1450 & 3 \\ 453 & 1552 \end{array}\right),\left(\begin{array}{rr} 779 & 1548 \\ 1554 & 1487 \end{array}\right),\left(\begin{array}{rr} 1294 & 1549 \\ 531 & 20 \end{array}\right),\left(\begin{array}{rr} 937 & 12 \\ 942 & 73 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 1510 & 1551 \end{array}\right),\left(\begin{array}{rr} 1549 & 12 \\ 1548 & 13 \end{array}\right),\left(\begin{array}{rr} 1485 & 1232 \\ 1522 & 1243 \end{array}\right)$.
The torsion field $K:=\Q(E[1560])$ is a degree-$9661317120$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1560\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 117 = 3^{2} \cdot 13 \) |
| $3$ | additive | $2$ | \( 832 = 2^{6} \cdot 13 \) |
| $5$ | split multiplicative | $6$ | \( 7488 = 2^{6} \cdot 3^{2} \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 37440.dt
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 390.d4, its twist by $24$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-39}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{6}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.2.249600.3 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{6}, \sqrt{-26})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.0.526436352.5 | \(\Z/6\Z\) | not in database |
| $8$ | 8.0.360319361126400.53 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.94758543360000.4 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.560701440000.31 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.6.4473661140604210046828544000000000000.2 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 13 |
|---|---|---|---|---|
| Reduction type | add | add | split | nonsplit |
| $\lambda$-invariant(s) | - | - | 1 | 0 |
| $\mu$-invariant(s) | - | - | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.