Properties

Label 372645.ev
Number of curves $1$
Conductor $372645$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ev1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 372645.ev1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 372645.ev do not have complex multiplication.

Modular form 372645.2.a.ev

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} + 2 q^{4} - q^{5} - 2 q^{10} - 3 q^{11} - 4 q^{16} + 3 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 372645.ev

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
372645.ev1 372645ev1 \([0, 0, 1, -273, 6529]\) \(-53248/405\) \(-17114466915\) \([]\) \(417792\) \(0.64657\) \(\Gamma_0(N)\)-optimal