Properties

Label 372645.et
Number of curves $2$
Conductor $372645$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("et1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 372645.et have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 372645.et do not have complex multiplication.

Modular form 372645.2.a.et

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} + q^{5} - 3 q^{8} + q^{10} + 6 q^{11} - q^{16} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 372645.et

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
372645.et1 372645et2 \([1, -1, 0, -117397149, 280651583330]\) \(16008724040427/6220703125\) \(69531103523505399521484375\) \([2]\) \(108380160\) \(3.6575\)  
372645.et2 372645et1 \([1, -1, 0, -102863994, 401459887583]\) \(10768971245787/3696875\) \(41321341522540351715625\) \([2]\) \(54190080\) \(3.3109\) \(\Gamma_0(N)\)-optimal