Properties

Label 372645.bk
Number of curves $1$
Conductor $372645$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 372645.bk1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 372645.bk do not have complex multiplication.

Modular form 372645.2.a.bk

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - q^{5} + 3 q^{8} + q^{10} + 3 q^{11} - q^{16} + q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 372645.bk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
372645.bk1 372645bk1 \([1, -1, 1, -165455933, -821034502648]\) \(-11240062477/30375\) \(-1353687148278421922203875\) \([]\) \(75479040\) \(3.5044\) \(\Gamma_0(N)\)-optimal