Properties

Label 372645.ey
Number of curves $1$
Conductor $372645$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ey1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 372645.ey1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 372645.ey do not have complex multiplication.

Modular form 372645.2.a.ey

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} + 2 q^{4} - q^{5} - 2 q^{10} - q^{11} - 4 q^{16} - q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 372645.ey

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
372645.ey1 372645ey1 \([0, 0, 1, -14185353, 21116378169]\) \(-762549907456/24024195\) \(-9945456599596569224355\) \([]\) \(37255680\) \(2.9973\) \(\Gamma_0(N)\)-optimal