Properties

Label 372400.hm
Number of curves $1$
Conductor $372400$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hm1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 372400.hm1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(23\) \( 1 + 5 T + 23 T^{2}\) 1.23.f
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 372400.hm do not have complex multiplication.

Modular form 372400.2.a.hm

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{9} - 3 q^{13} - 7 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 372400.hm

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
372400.hm1 372400hm1 \([0, 1, 0, 28992, 3607988]\) \(357911/950\) \(-7153059200000000\) \([]\) \(1741824\) \(1.7259\) \(\Gamma_0(N)\)-optimal