Properties

Label 371943v
Number of curves $1$
Conductor $371943$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("v1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 371943v1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(11\)\(1 + T\)
\(13\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 371943v do not have complex multiplication.

Modular form 371943.2.a.v

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{4} - q^{5} + 2 q^{7} - q^{11} - q^{13} + 4 q^{16} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 371943v

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
371943.v1 371943v1 \([0, 0, 1, -3468, 286182]\) \(-262144/1859\) \(-32711499022059\) \([]\) \(591360\) \(1.2764\) \(\Gamma_0(N)\)-optimal