Properties

Label 371943.a
Number of curves $1$
Conductor $371943$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 371943.a1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(11\)\(1 - T\)
\(13\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 371943.a do not have complex multiplication.

Modular form 371943.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + 2 q^{4} - 4 q^{5} + 3 q^{7} + 8 q^{10} + q^{11} - q^{13} - 6 q^{14} - 4 q^{16} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 371943.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
371943.a1 371943a1 \([0, 0, 1, -35270427, 473048432226]\) \(-56129095503872/1085737589651\) \(-93862624773279091679426763\) \([]\) \(273862656\) \(3.6646\) \(\Gamma_0(N)\)-optimal