Show commands: SageMath
Rank
The elliptic curves in class 36800cp have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 36800cp do not have complex multiplication.Modular form 36800.2.a.cp
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 36800cp
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 36800.ck2 | 36800cp1 | \([0, 0, 0, 500, -6000]\) | \(13500/23\) | \(-23552000000\) | \([2]\) | \(27648\) | \(0.67517\) | \(\Gamma_0(N)\)-optimal |
| 36800.ck1 | 36800cp2 | \([0, 0, 0, -3500, -62000]\) | \(2315250/529\) | \(1083392000000\) | \([2]\) | \(55296\) | \(1.0217\) |