Properties

Label 364815.bf
Number of curves $1$
Conductor $364815$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bf1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 364815.bf1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1\)
\(67\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 364815.bf do not have complex multiplication.

Modular form 364815.2.a.bf

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} + q^{5} - 3 q^{8} + q^{10} - q^{16} + 6 q^{17} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 364815.bf

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
364815.bf1 364815bf1 \([1, -1, 0, 7056, 1427575]\) \(3639707951/84796875\) \(-905061553171875\) \([]\) \(1271808\) \(1.5501\) \(\Gamma_0(N)\)-optimal