Properties

Label 36414bb
Number of curves $1$
Conductor $36414$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 36414bb1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 36414bb do not have complex multiplication.

Modular form 36414.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - q^{7} - q^{8} + q^{10} + 3 q^{11} + q^{14} + q^{16} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 36414bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
36414.p1 36414bb1 \([1, -1, 0, -236745, 44552389]\) \(-288568081/1176\) \(-5980344757199064\) \([]\) \(235008\) \(1.8834\) \(\Gamma_0(N)\)-optimal