Properties

Label 364140.n
Number of curves $4$
Conductor $364140$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 364140.n have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 364140.n do not have complex multiplication.

Modular form 364140.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - q^{7} + 6 q^{11} - 4 q^{13} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 364140.n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
364140.n1 364140n3 \([0, 0, 0, -783768, 246676817]\) \(189123395584/16078125\) \(4526645036807250000\) \([2]\) \(7962624\) \(2.3211\)  
364140.n2 364140n1 \([0, 0, 0, -159528, -24461827]\) \(1594753024/4725\) \(1330279357755600\) \([2]\) \(2654208\) \(1.7718\) \(\Gamma_0(N)\)-optimal
364140.n3 364140n2 \([0, 0, 0, -94503, -44580562]\) \(-20720464/178605\) \(-804552955570586880\) \([2]\) \(5308416\) \(2.1184\)  
364140.n4 364140n4 \([0, 0, 0, 841857, 1136543942]\) \(14647977776/132355125\) \(-596213471087956512000\) \([2]\) \(15925248\) \(2.6677\)