Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-7646408x-8140860812\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-7646408xz^2-8140860812z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-619359075x-5932829454750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(6268, 436150)$ | $5.3850964747302344638098559255$ | $\infty$ |
| $(-1597, 0)$ | $0$ | $2$ |
Integral points
\( \left(-1597, 0\right) \), \((6268,\pm 436150)\)
Invariants
| Conductor: | $N$ | = | \( 36400 \) | = | $2^{4} \cdot 5^{2} \cdot 7 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $969113600000000$ | = | $2^{21} \cdot 5^{8} \cdot 7 \cdot 13^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{772531501373731009}{15142400} \) | = | $2^{-9} \cdot 5^{-2} \cdot 7^{-1} \cdot 13^{-2} \cdot 31^{3} \cdot 29599^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4087995875931644932164691186$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.91093345081616899649885733053$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9752031162957147$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.633309591340655$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.3850964747302344638098559255$ |
|
| Real period: | $\Omega$ | ≈ | $0.090789407856488158780081306623$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2^{2}\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.9112777615265586914805194988 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.911277762 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.090789 \cdot 5.385096 \cdot 32}{2^2} \\ & \approx 3.911277762\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 663552 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{13}^{*}$ | additive | -1 | 4 | 21 | 9 |
| $5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
| $7$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $13$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | $\ell$-adic index |
|---|---|---|---|
| $2$ | 2B | 2.3.0.1 | $3$ |
| $3$ | 3B | 9.12.0.1 | $12$ |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 32760 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \), index $864$, genus $21$, and generators
$\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 16370 & 32733 \\ 25313 & 2006 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 32725 & 36 \\ 32724 & 37 \end{array}\right),\left(\begin{array}{rr} 13103 & 32724 \\ 32750 & 32399 \end{array}\right),\left(\begin{array}{rr} 9364 & 9 \\ 4759 & 178 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 16689 & 298 \end{array}\right),\left(\begin{array}{rr} 19 & 36 \\ 3240 & 6139 \end{array}\right),\left(\begin{array}{rr} 10111 & 36 \\ 32066 & 5047 \end{array}\right),\left(\begin{array}{rr} 25481 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 14 & 253 \end{array}\right)$.
The torsion field $K:=\Q(E[32760])$ is a degree-$175294937825280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/32760\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 175 = 5^{2} \cdot 7 \) |
| $5$ | additive | $18$ | \( 1456 = 2^{4} \cdot 7 \cdot 13 \) |
| $7$ | split multiplicative | $8$ | \( 5200 = 2^{4} \cdot 5^{2} \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 2800 = 2^{4} \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 6, 9 and 18.
Its isogeny class 36400.m
consists of 6 curves linked by isogenies of
degrees dividing 18.
Twists
The minimal quadratic twist of this elliptic curve is 910.g4, its twist by $-20$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{14}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-5}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.0.236600.1 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-5}, \sqrt{14})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.2.370304789400000.1 | \(\Z/6\Z\) | not in database |
| $6$ | 6.0.548599688000.3 | \(\Z/18\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.175551900160000.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.3582691840000.3 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/18\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | add | split | ss | nonsplit | ss | ord | ord | ord | ord | ord | ss | ord | ss |
| $\lambda$-invariant(s) | - | 3 | - | 2 | 1,3 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,3 | 1 | 1,1 |
| $\mu$-invariant(s) | - | 0 | - | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.